RIKEN Symposia: OLSP Symposium 2025 – Present and Future Perspectives of Open Life Sciences –

Session 2: Case Studies in Open Sciences

Case Series of Open Data Utilization in Disease Genetics and Genomics

Generated by DALL·E

Laboratory for Molecular Pathology of Psychiatric Disorders RIKEN Center for Brain Science

01/27/2025

Case descriptions

主要論文

2. Nakamura T,* Ueda J,* ⁺ Mizuno S,* Honda K, Kazuno A-a, Yamamoto H, Hara T, and Takata A ⁺
Topologically associating domains define the impact of de novo promoter variants on autism spectrum disorder risk
Cell Genomics 2024 https://doi.org/10.1016/j.xgen.2024.100488
SFARI Baseの大規模公的ゲノムデータの解析と実験的検証を組み合わせ、ラボの総力を結集して仕上げました。プレスリリースはこちら。
Analysis of publicly available large genome data
6. Takata A ⁺ , Hamanaka K, Matsumoto N ⁺
Refinement of the clinical variant interpretation framework by statistical evidence and machine learning
Med 2021 https://doi.org/10.1016/j.medj.2021.02.003
世界標準の遺伝子診断指針であるACMG/AMPガイドラインを統計学と人工知能でカイゼンする方法を提示しました。 計算機の初期投資以外は電気
代しかかかっていません。プレスリリースはこちら。GitHubページはこちら。 We have only spent the electricity cost except for the
initial investment in the computing system.
10. Takata A ⁺ , Matsumoto N, Kato T ⁺
Genome-wide identification of splicing QTLs in the human brain and their enrichment among schizophrenia-associated loci
Nature Communications 2017
CommonMindコンソーシアムのデータを使って、網羅的に脳内で選択的スプライシングに関わる遺伝子変異を同定し、それらが統合失調症リスク
に関与することを示しました。 <mark>計算機の初期投資以外は電気代しかかかっていません。</mark> プレスリリースはこちら。

12. Takata A, Ionita-Laza I, Gogos JA, Xu B, Karayiorgou M

De Novo Synonymous Mutations in Regulatory Elements Contribute to the Genetic Etiology of Autism and Schizophrenia *Neuron* 2016

De novo変異のうち、タンパク質のアミノ酸配列を変えない同義置換変異(シノニマス変異、サイレント変異ともよばれる)の中にも自閉スペクト ラム症や統合失調症リスクに関与するものがあることを明らかにしました。計算機の初期投資以外は電気代しかかかっていません。 Case 1

UCSC Genome Browser

Clinical and Translational Article Refinement of the clinical variant interpretation framework by statistical evidence and machine

learning **STAR***METHODS KEY RESOURCED TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Deposited data			and the second second second second
ACMG/AMP guideline	Richards et al.		Standards and guidelin
gnomAD	Karczewski et al. ⁹ and Lek et al. ¹⁰	https://gnomad.broadinstitute.org/	variants: a joint concon
HGMD	Stenson et al.	http://www.hgmd.cf.ac.uk/ac/index.php	variants: a joint consens
ClinVar	Landrum et al. ¹²	https://www.ncbi.nlm.nih.gov/clinvar/	College of Medical
Repeating Elements by RepeatMasker in the UCSC Table Browser	http://genome.ucsc.edu/cgi-bin/ hgTrackUi?db=hg19&g=rmsk	Accessed in August 2018	Association
1000 Genomes Project ancestral allele data	The 1000 Genomes Project Consortium, 2012 ⁴⁰	ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/ phase1/analysis_results/supporting/ ancestral_alignments/ human_ancestor_GRCh37_e59.tar.bz2	The ACMG/AMP gu
GTEx	https://www.gtexportal.org/home/	GTEx Analysis V8	
TOPMed	Taliun et al. ²⁴	https://bravo.sph.umich.edu/freeze5/hg38/ get_authorized	developed by ACM
GenomeAsia 100K	GenomeAsia100K Consortium ³⁰	https://browser.genomeasia100k.org/ #tid_download	on their clinical sig
De novo variants in DD, ASD, and controls	Satterstrom et al. ²⁴ and Kaplanis et al. ²⁵	Table S1 of the Satterstrom et al. ²⁴ study and Table S1 of the Kaplanis et al. ²⁵ study	
Software and algorithms			
bcftools	https://samtools.github.io/bcftools/ bcftools.html	Version 1.3.1	anomAD
SnpEff (v4.2)	Cingolani et al. ⁶	http://snpeff.sourceforge.net/	giona
dbNSFP (v3.0a or 3.5a)	Liu et al. ⁴¹	http://varianttools.sourceforge.net/ Annotation/DENSFP	
SIFT	Kumar et al. ¹⁶	http://provean.jcvi.org	
PolyPhen-2	Adzhubei et al.	http://genetics.bwh.hervard.edu/pph2/	Genome Aggregation Database
LRT	Chun and Fay ¹⁸	http://www.genetics.wustl.edu//flab/data5. html	https://gnomad.broadinstitute.org/
MutationTaster	Schwarz et al. ¹⁹	http://www.mutationtaster.org/	
Mutation Assessor	Reva et al. ²⁰	http://mutationassessor.org/r3/	_
PROVEAN	Choi et al. ²¹	http://provean.jcvi.org/index.php	
bedtools	Quinlan and Hall ⁴²	https://bedtools.readthedocs.io/en/latest/ index.html	
Ensembl BioMart	https://grch37.ensembl.org/info/data/ biomart/index.html	GRCh37.p13	
SLiM (v3.2)	Haller and Messer ¹⁴	https://messerlab.org/slim/	Human Gene Mutation Database
pROC	Robin et al.43	https://web.expasy.org/pROC/	https://www.hamd.cf.ac.uk/ac/index
TITER	Zhang et al. ²⁶	https://github.com/zhangsa/thu/titer	https://www.hghlu.cl.ac.uk/ac/hluex
randomForest	https://cran.r-project.org/web/packages/ randomForest/	Version 4.6-14	
CADD	Kircher et al. ²²	https://cadd.gs.washington,edu/	CTGATGGTATGGGGCCAAGAGA
Eigen	Ionita-Laza et al. ⁴⁴	http://www.columbia.edu/~iii2135/eigen.html	
phyloP score	Pollard et al.45		
dddMAPS	Short et al.46	https://github.com/pjshort/dddMAPS	Clinically relevant variation GCACTGACTCTCTCCCCTATIO
DDG2P	https://decipher.sanger.ac.uk/ddd#ddgenes	Accessed in July 2019	

GRCh37/hg19

https://genome.ucsc.edu

Genetics ACMG STANDARDS AND GUIDELINES inMedicine Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

The target

The ACMG/AMP guideline refers to the standardized framework developed by ACMG and the AMP to classify genetic variants based on their clinical significance.

A **publicly** accessible resource that aggregates and harmonizes genetic variation data from general populations worldwide.

Human Gene Mutation Database https://www.hgmd.cf.ac.uk/ac/index.php

https://www.ncbi.nlm.nih.gov/clinvar/

A comprehensive resource that catalogs published genetic mutations associated with human inherited diseases.

	Pathogenic Criteria					
	Rule	Modification Type	Rule Description			
VS.	PVS1	RE	Null variant in gene with established LOF as disease mechanism			
	PS1	NC	Different nucleotide change (same amino acid) as a previously established pathogenic variant			
	PS2	DG	<i>De novo</i> (paternity confirmed) in a patient with disease and no family history			
TRONG	PS3	DG	Functional studies of mammalian knock-in models supportive of a damaging effect on the gene or gene product			
S	PS4	DG	Prevalence of the variant in affected individuals is significantly increased compared to the prevalence in controls -OR- Variant identified in ≥15 probands with consistent phenotypes			
	PP1_Strong	MS	Variant segregates with ≥7 meioses			
	PM1	DG	Hotspot/est. functional domain (amino acids 181-937) without benign variation			
	PM2	DG	Absent/extremely rare (<0.004%) from large population studies			
	PMB	RE	Detected in trans with a pathogenic variant (recessive)			
ATE	PM4	DG	Protein length changes due to in-frame deletions/insertions of any size in a non-repeat region or stop-loss variants			
NODER	PM5	NC	Missense change at an amino acid residue where a different missense change previously established as pathogenic			
	PM6	DG	Confirmed de novo without confirmation of paternity			
	PVS1_Moderate	MS	Null variant in gene with evidence supporting LOF as disease mechanism			
	PS4_Moderate	MS	Variant identified in ≥6 probands with consistent phenotypes			
	PP1_Moderate	MS	Variant segregates in ≥5 meioses			
	PP1	DG	Variant segregates in ≥3 meioses			
NG	PP2	RE	Missense variant in a gene that has a low rate of benign missense variation and where missense variants are a common mechanism of disease			
IPPORT	PP3	NC	Multiple lines of computational evidence support a deleterious effect on the gene or gene product			
SL	PP4	RE	Phenotype specific for disease with single genetic etiology			
	PP5	RE	Reputable source reports as pathogenic			
	PS4_Supporting	MS	Variant identified in ≥2 probands with consistent phenotypes			

www.clinicalgenome.org

The ACMG Guideline in Brief:

- The pathogenicity of a variant is assessed based on various criteria, which are categorized into four distinct levels: Very Strong, Strong, Moderate, and Supporting.
 For instance, loss-of-function mutations (e.g., nonsense, splice site, or frameshift variants) in genes known to cause diseases are classified as "Very Strong", while *de novo* (newly occurring) mutations are classified as "Strong."
- The final pathogenicity of a variant is determined by the combination of criteria that are met.

Table 5 Rules for combining criteria to classify sequence variants

Pathogenic	(i) 1 Very strong (PVS1) AND	Likely pathogenic	(i) 1 Very strong (PVS1) AND 1 moderate (PM1-
	(a) ≥ 1 Strong (PS1–PS4) OR		PM6) OR
	(b) ≥2 Moderate (PM1–PM6) OR		(ii) 1 Strong (PS1–PS4) AND 1–2 moderate
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR		(iii) 1 Strong (PS1–PS4) AND \geq 2 supporting (PP1–PP5) OP
	(d) ≥2 Supporting (PP1–PP5)		(iii) > 2 Moderate (RM1, RM6) OR
	(ii) ≥2 Strong (PS1–PS4) OR		(IV) 25 IVIDGETATE (PIVIT-PIVIO) OR
	(iii) 1 Strong (PS1–PS4) AND		(V) 2 Moderate (PM I–PM6) AND ≥2 supporting (PP1–PP5) OR
	(a)≥3 Moderate (PM1–PM6) OR		(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting
	(b)2 Moderate (PM1–PM6) AND \geq 2 Supporting (PP1–PP5) OR		(PP1-PP5)
	(c)1 Moderate (PM1–PM6) AND \geq 4 supporting (PP1–PP5)		

OL SD

G

UGU UGC Cys

UGG Trp

Arg

Gly

CGU

CGC CGA

CGG

AGU Ser

AGA Arg

GGU

GGC GGA

GGG

U

C

G

U

C

A G

U

С

A G

U

С

A

G

Third letter

Use of gnomAD open data of human variants to estimate average deleteriousness across variant types

Real world data of variants in protein coding regions from 123,136* individuals (*at the time of our previous study)

1.00

Forward genetic simulation

gnomad.broadinstitute.org

eLOF: established loss-of-function, defined as nonsense, canonical splice site, and frameshift variants dMIS: damaging missense

Takata et al., Med 2021

Extraction of deleterious variant subtypes using the proportion of rare variants as an indicator (1)

eLOF: established loss-of-function (PVS)

dMIS: damaging missense (PS)

Extraction of deleterious variant subtypes using the proportion of rare variants as an indicator (2)

• Start-lost

The ATG sequence closest to the known start codon (i.e. a potential start codon) is...

<u>Inframe</u>

gcatgctagcATG|GCT|AGC|TAG|TCA|ATG|CAT|AG →Less deleterious ?

Out-of-frame

acgtcgatcgATG|CCG|CTG|CAT|GCT|AGC|TAG|TC →More deleterious ?

nATG: nearest ATG

Extraction of deleterious variant subtypes using the proportion of rare variants as an indicator (2)

• Start-lost

The ATG sequence nearest to the known start codon (i.e. a potential start codon) is...

<u>Inframe</u>

gcatgctagcATG|GCT|AGC|TAG|TCA|ATG|CAT|AG →Less deleterious ?

Out-of-frame

acgtcgatcgATG|CCG|CTG|CAT|GCT|AGC|TAG|TC →*More deleterious* ?

Stratification of *nearest ATG inframe start-lost variants* based on the distance between the known start codon and the nearest ATG.

gcatgctagcATG | GCT | ATG | TAG | TCA | AGC | CAT | AG →Less deleterious?

acgtcgatcgATG|CCG|CTG|.....|AGC|ATG|TC →More deleterious ?

nATG: nearest ATG

Extraction of deleterious variant subtypes using the proportion of rare variants as an indicator (2)

There is accumulating evidence indicating that

- Protein translation can occur at various locations within a transcript (Ingolia, Cell 2016).
- Translation can be initiated from ATG-like sequences, such as CTG, and such translation may occur more frequently than previously thought (Brar, Cell 2016).

Stratification of *nearest ATG inframe start-lost variants* based on the distance between the known start codon and the nearest ATG.

gcatgctagcATG | GCT | ATG | TAG | TCA | AGC | CAT | AG →Less deleterious?

acgtcgatcgATG|CCG|CTG|.....|AGC|ATG|TC →More deleterious ?

Constriction and evaluation of the PoStaL

(Pathogenicity of Start-Lost) scoring system

 Our results indicate the importance of constructing a model optimized for the variant type of interest, as other tools are not designed specifically for start-lost variants. **Clinical and Translational Article**

Refinement of the clinical variant interpretation framework by statistical evidence and machine learning

Specificity

Very strong

Strong

Moderate

Supporting

Takata et al. Med, 2021

Case descriptions

主要論文

·				
2. Nakamura T, [*] Ueda J, ^{*†} Mizuno S, [*] Honda K, Kazuno A-a, Yamamoto I	H, Hara T, and Takata A ⁺			
Topologically associating domains define the impact of de novo promot	er variants on autism spectrum disorder risk			
Cell Genomics 2024 https://doi.org/10.1016/j.xgen.2024.100488				
SFARI Baseの大規模公的ゲノムデータの解析と実験的検証を組み合わせ、	ラボの総力を結集して仕上げました。プレスリリースはこちら。			
Analysis of public	ly available large genome data			
6. Takata A ⁺ , Hamanaka K, Matsumoto N ⁺				
Refinement of the clinical variant interpretation framework by statistical evidence and machine learning				
Med 2021 https://doi.org/10.1016/j.medj.2021.02.003				
世界標準の遺伝子診断指針であるACMG/AMPガイドラインを統計学と人工知能	でカイゼンする方法を提示しました。計算機の初期投資以外は電気			
代しかかかっていません。 プレスリリースはこちら。GitHubページはこちら。	We have only spent the electricity cost except for the			
	initial investment in the computing system.			
10. Takata A ⁺ , Matsumoto N, Kato T ⁺				
Genome-wide identification of splicing QTLs in the human brain and their	enrichment among schizophrenia-associated loci			
Nature Communications 2017				

CommonMindコンソーシアムのデータを使って、網羅的に脳内で選択的スプライシングに関わる遺伝子変異を同定し、それらが統合失調症リスク に関与することを示しました。計算機の初期投資以外は電気代しかかかっていません。プレスリリースはこちら。

12. Takata A, Ionita-Laza I, Gogos JA, Xu B, Karayiorgou M

De Novo Synonymous Mutations in Regulatory Elements Contribute to the Genetic Etiology of Autism and Schizophrenia *Neuron* 2016

De novo変異のうち、タンパク質のアミノ酸配列を変えない同義置換変異(シノニマス変異、サイレント変異ともよばれる)の中にも自閉スペクト ラム症や統合失調症リスクに関与するものがあることを明らかにしました。計算機の初期投資以外は電気代しかかかっていません。

Article Case 2

Topologically associating domains define the impact of de novo promoter variants on autism spectrum disorder risk

STAR * METHODS KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	DENTFIER
Chemicals, peptidee, and recombinant protain	18	
Matrix-511 silk	Takara Bio Inc.	Cat# 892011
TrypLE TM SELECT	Therma Fisher Scientific	Cat# 12563029
0.5 mM EDTA/PBS solution	NACALAI TESQUE, INC.	Cat# 13567-84
StemFit AK02N	RIPROCELL	Cat# RCAK02N
CultureSure Y-27632	Fulifilm	Cat# 036-24023
Alt-R S.p. HiFI Cas9 Nuclease V3	Integrated DNA Technologies	Cat# 1081060
7-AAD	BD Biosciences	Cat# 559925
Primocin(TM)	NACALAI TESQUE	Cat# 14860-36
Accutase	NACALAI TESQUE	Cat# 12679-54
BigDye Terminator V3.1	Thermo Fisher Scientific	Cat# 4337455
STEM CELL BANKER GMP grade	Takara Bio Inc.	Cat# 11924
Trizol respent	Therma Fisher Scientific	Cat# 15596026
Recombinant DNasel (Rnase-free)	Takara Bio Inc.	Cat# 2270A
Critical commercial assays		
Guide-it TM soRNA in vitro Transcription Kit	Takara Bio Inc.	Cat# 632635
NEBNext Ultra RNA Library	New England BioLabs Inc.	Cat # E7530
Prep Kit for Illumina		66 666
Deposited data		
RNA-seq data of wild-type/mutant iPSCs	This study	The NDBC Human Database. Japan (Accession number: JGA: JGAS000651)
Population datasets	SFARI Base	https://www.start.org/resource/start-base/
TAD list of DLPFC	PsychENCODE Integrative	rtto://resource.psychencode.org/
	Analysis resource	Ostesers/Derived/DER-18
		TAD adultrem bed
TAD list of IPSC-derived neurons	GEO database	GSE79965, https://www.ncbi.nlm.nih.gov/ geo/quen/koo.og/?era=GSE78965
TAD lists of germinal zone	GEO database	GSE77565, https://www.pcbl.nim.nin.cow
and cortical plate		geo/quety/scc.cgi?acc=0.5e77.65
Other TAD lists	3D Genome Browser ³⁹	http:///dgenome.fsm.norfhwestern.edu/
Data of reference epigenomics	Roadmap Epigenomics Project	Ettp://www.toactivapepigenomics.org/
Data of enhancer regions	PsychENCQDE ²⁴	hilp://www.uce.psychencode.org/Datasets/ Derived/DER-18_TAD_aduttorain-bed
GWAS sumstat data	Psychiatric Genomics	https://www.med.unc.edu/
	Consortium; Matoba et al. ;	pga/downbackesuits/;
	Aikes Price Stab	spark and sumstationary indeters
		ASD SPARK IPSYCH PGC.tev.oz/:
		https://alkesgroup.broadinstitute.org/
		LDSCDRE/independent_sumstats/
Experimental models: Organisms/strains.		
Human: 20187-F1	RIKEN BICResource Research Center	HPS4290
Oligonucleotides		1174
Oligo lists	This paper Tables 59, 510, and 511	N/A
Soltware and algorithms		
H	The R Foundation	Pttps://www.r-project.org/
BWA-MEM (0.0.7.15)	Highnam et al."	underlight deutseller understrettenet.
Continued		
REAGENT or RESOURCE	SOURCE	IDENTIFIER
GSEA (v.4.3.2)	Subramanian et al.	https://www.gaea-meigdo.org/gaea/
Analysis codes used in this manuscript	This paper	rittps://do.brg/10.5281/zenodo. 10437280 or upon request
Other		
Neon TM Transfection System	Thermo Fisher Scientific	Gat# MPK1025
BD FACSAria II	BD Biosciences	N/A
ABI 3730xl sequencer	Life Technologies	Gat# 3730xILV-100
Agilent 2100 Bioanalyzer	Agilent Technologies, Ltd.	N/A
Illumina NovaSeg 6000 System	Illumina, Inc.	N/A

	19-294 (29-29-29)	0.000 PT-0.0000 PT-0.0000
REAGENT OF RESOURCE	SOUNDE	IDENTIFIER
GATK (v.3.5 and v4.1.9.0)	DePristo et al.	https://gatil.broadinetitute.org/nc
boftools (v.1.10.2)	Danecek et al. ^{via}	http://semiosis.glihub.ig/boficels/
voftools (v.0.1.17)	Danecek et al.	https://vc/tools.sourceforge.nec
TrioDenovo (v.0.06)	Wei et al. ⁸⁰	https://genome.oph.umich.edu/wiki/Triodenovo
SnpSift (v.5.0c)	Cingolani et al. ^{e1}	http://poingola.g/hub.lo/SnpEf/
RepeatMasker	UCSC	https://www.repealmasker.org/
PLINK (v.1.90b6.24)	Purcell et al. ⁶² ; Chang et al. ⁶³	https://www.cag-genamics.org/plinit/
3D Genome Browser	Wang et al. ⁵⁸	http://Sdgensme/lam.narthwestern.edu/
Ensembl Variant Effect Predictor	McLaren et al. ⁵⁴	bill as://asia.ensembi.cvg/imfo// docs/loois/veg/indei.ntm/
bedtools	Quinlan et al. ⁶⁵	https://bedtools.readthedoca.lo/
meta package (v5.5-0)	Balduzzi et al.	https://cran.e-project.org/
poolr package (v.1.1.1)	Cinar et al. ⁶⁷	https://wan.r-project.org/
regBase (v.1.1.1)	Zhang et al. ³⁵	https://github.com/mul/nlab/regBase/
CADD (v.1.3, 1.4, and 1.6)	Kircher et al. ²⁸ ; Rentzsch et al. ³⁹	https://badd.gs.washington.edu/
CDTS	di lulio et al.23	http://www.hli-opendata.com/ngncsding/
Cscape	Rogers et al. ⁵⁸	http://GBoane.biopomoute.ong.uk/
Cscape Somatic	Rogers et al.	hito://oscape-somaucibiocompula.mo.uk/
DANN	Ouano et al. ⁵⁰	https://chelles.uel.edu/or/blc.date/DANEI/
DVAB	Yang et al."	https://www.wumc.cm/pap/dvar
Figen/Figen PC	Ionita-I aza et al. ³⁹	http://www.columbia.edu/~12135/s/oser.html
EATHMM (MKL and XE)	MKI Shihah et al W	http://failhmm.hiceamo.da.org.uk/
recent and party	XF.Rogers et al. ⁴⁴⁴	http://fathmmubic.compute.org.uk//athmm-si/
FIRE	Ioannidis et al. ⁹⁸	hips://sies.geogle.sem/ele/
fitCons	Gulko et al an	http://compden.cabl.ed./IIICoca/
FitCons?	Guiko et al. ⁹⁹⁸	https://hitkub.nam/Pch/Sanali.sb/FilCany?
FunSec2	Filet al	http://www.company.com/
GenoCenvon	Luet al ⁶⁴	https://zhanantar.om/@eas/Conven_Index.htm
UNSIGHT	Hugon at al. ³¹	https://nithub.com/CostSenell.sh/ INSIGHT
ncFR	Wells et al.	hitses Salibula com Talasti abdor FR datasate
Orion	Guerow at al	ettas://etta/open/eta/open/open/open/open/open/open/open/open
BAEA	Zhou et al 109	https://doi.org/10.000/0000000000000000000000000000000
ReMM	Smedley at al 101	https://camm.bibeditb.com/
noman packana	Timer at al 10	hitroreflexan a serviced conf
LDSC (v.1.0.1)	Bulik-Sullivan et al. ³	https://github.com/builk/tdac
trim_galore (v.0.6.6)	Finucane et al. Krueger et al. ¹⁰⁰	https://www.isiginformatics.babraham.
0710 L 0 3 0 1	example in the	serind blueststatum Georgi
STAR (V.2.7.9a)	Ljobin et al.	mtps://github.com/alexgobio/STAR/
5amtoois (V.1.3.1)		enderignam unigeritätik.
reatureCounts (V.2.0.1)	Liao et al.	https://subread.sourceforge.net/
DESeq2 package (v.1.36:0)	Love et al. ""	https://blocenductor.org/pashages/ releasa/bloc/html/DESeq2-html
sva package (v.3.44.0)	Leek et al. ¹⁰⁴	https://bioconductor.org/packages/ release/bioc/html/sva.html
Metascape	Zhou et al. ¹⁰⁰	https://metascape.org/
Cytoscape (v.3.7.2)	Shannon et al. ¹⁰⁰	https://cytoscape.org/
CHOPCHOP	Labun et al. ¹⁸⁶	https://chapshap.obu.ulo.ma/
Cas Offinder	Page at al 10	http://www.menome.at/~as.officier/

Nakamura, Ueda, Mizuno et al., Cell Genomics 2024

Cell Genomics

CellPress

SFARI Base

https://base.sfari.org/

Collection

SPARK

Simons Powering Autism Resea

Genetic		A.		T
Base Accession ID 🗢	Туре \$	Name \$	Cohort IF	
SFARI_DS341427	Genetic Data	Autism BrainNet (ABN) Genetic Data (WES & WGS)	ABN	×
	Genetic Data	ABN data by C. Walsh lab: NatNeuro2021	ABN	Ŷ
SFARI_DS824270	Genetic Data	AIC integrated WES (IWES) (June 2024)	AIC	Ŷ
SFARI_DS822016	Genetic Data	A(C Biosensor Data (Imbiriba et al., 2023)	AIC	~
SFARI_DS229125	Genetic Data	Genotypes from 25,746 individuals from SSC, SPARK, and	I A O Mixed	Ý
SFARI_DS340922	Genetic Data	GATK reprocessed SNV/indel VCFs for SSC and SPARK (Pi	lot . • Mixed	*

Whole genome sequencing data

Nakamura, Ueda, Mizuno et al., Cell Genomics 2024

brain/stem cell TAD data are used

1.0 0.9 1.1 Odds Ratio

12

(6235/5068)

Bladder

0.9

1.0

Odds Ratio

1.1

12

(3982/3130)

Experimental analysis of the effect of selected ASD gene TAD promoter DNVs on gene expression profiles

CRISPR-Cas9

#1, chr7:g.26200781C>T

- Altering a conserved base
- Bound to CTCF in neuronal cells (ENCODE3)
- High-confidence ASD genes (SFARI gene score S, 1 or 2) in the same TAD
- High specificity gRNA can be designed

Nakamura, Ueda, Mizuno et al., Cell Genomics 2024 PAM gRNA parental line 5'- AGAACCTTCCCCCCCACTAACGCGTCTTCCGCTACG -3' Control 5'- AGAACCTTCCCCCGCACTAACGCGTCTTCCGCTACG -3' Homo-KI 5'- AGAACCTTCCCCCGCACTAACGCGTCTTCCGCTACG -3'

Local alteration of multiple genes in the same TAD

Effect of the chr7:g.26200781C>T variant on the transcriptomic profile

風が吹けば桶屋が儲かる (as a strong wind blows, business comes to barrel makers)

Nakamura, Ueda, Mizuno et al., Cell Genomics 2024

Development and generation of publicly available resources

zenodo GitHub CI SPARK SSC 2.618 C SPARK upt Normal x64 Bytes 374 Byles D SSC ups Nores In TADASD_Fighted 5.3 18 8.915 D SFARLOune genes 0 107.5 18 538.0 MB D SPARK SamperD liston 1.2 MB SPARK_promolerONV_List.bx

Human data NBDCヒトデータベース

Research ID	研究證目 🔶	公司日 🕴	データの種類	ŧ 研究 方法 [‡]	Ŧia	٠	●加君 (対象集団)	हरत त •	アク セス 刻限
hum0431.v1 JGA 3000661	精神神経疾患における病態生 違、発症患症性・近視反応性 帯の所明、および新地震度 よ、診断予約機能度目前 した遺伝子解析	v12024/01/25	NGS ((RNA-seq)	発現	(Ikamina (NovaSeq 6000)		自想スペクトラム 容悪者で同定され た変変異を導入した 満伝子改変ヒト PS細胞様:5棟体 コントロール遺伝 子改変ヒトPS細 胞様:4線体 (細胞株)		жы да (Тур ()

Utilization of open life science data

Human Gene Mutation Database

SIM NS

FOUNDATION

PROVEAN (Protein Variation Effect Analyzer)

Simons Powering Autism Research

Simons Simplex Collection

Transcriptomic dysregulation and autistic-like behaviors in Kmt2c haploinsufficient mice rescued by an LSD1 inhibitor

Takumi Nakamura¹, Toru Yoshihara², Chiharu Tanegashima³, Mitsutaka Kadota³, Yuki Kobayashi¹, Kurara Honda¹, Mizuho Ishiwata⁴, Junko Ueda¹, Tomonori Hara¹, Moe Nakanishi¹, Toru Takumi⁵, Shigeyoshi Itohara¹, Shigehiro Kuraku⁶, Masahide Asano², Takaoki Kasahara⁷, Kazuo Nakajima⁶, Takashi Tsuboi⁹, Atsushi Takata¹, Tadafumi Kato⁴

Summary

- By analyzing large open data of genomic variants from both the general lacksquarepopulation and affected individuals with statistical approaches and machine learning techniques, we proposed a method for refining standard genetic diagnosis guidelines. ClinVar
- An analysis of publicly available disease genome sequencing data from a unique viewpoint, utilizing open data for annotation, has led to the discovery of the role of TADs in the impact of promoter variants on ASD risk. ENCODE **PsychENCODE Knowledge Portal**
- The formation of a virtuous cycle of utilizing open data and developing new open resources from it will be key to the success of open life sciences.

Acknowledgments

RIKEN CBS

Takumi Nakamura Junko Ueda Shota Mizuno Naoki Hirose An-a Kazuno Kurara Honda Emiko Koyama Hirona Yamamoto Tomonori Hara Ayumu Kawasaki Li Sin Yi Risitha Subasinghe Yuki Niwa Sumina Atarashi Hiroyo Yamaguchi Tomoko Toyota **RRD** members

<u>Yokohama City Univ</u> Kohei Hamanaka Naomichi Matsumoto

and the providers/developers of many other resources